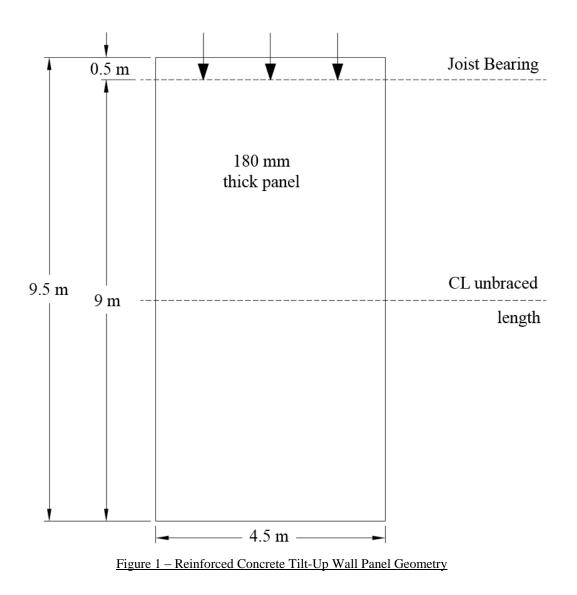




## Reinforced Concrete Tilt-Up Wall Panel Analysis and Design (CSA A23.3-14)






## Reinforced Concrete Tilt-Up Wall Panel Analysis and Design (CSA A23.3-14)

Tilt-up is form of construction with increasing popularity owing to its flexibility and economics. Tilt-up concrete is essentially a precast concrete that is site cast instead of traditional factory cast concrete members. A structural reinforced concrete tilt-up wall panel in a single-story warehouse (big-box) building provides gravity and lateral load resistance for the following applied loads from three roof joists bearing in wall pockets in addition to the wind:

| Roof dead load | = 10.5 kN per joist    |
|----------------|------------------------|
| Roof live load | = 11.0 kN per joist    |
| Wind load      | $= 1.5 \text{ kN/m}^2$ |

The assumed tilt-up wall panel section and reinforcement are investigated after analysis to verify suitability for the applied loads then compared with numerical analysis results obtained from <u>spWall</u> engineering software program from <u>StructurePoint</u>.





# Contents

| 1. | Minimum Vertical Reinforcement                           | 2  |
|----|----------------------------------------------------------|----|
| 2. | Tilt-Up Wall Panels Analysis and Design                  | 2  |
| 3. | Tilt-Up Wall Structural Analysis                         | 2  |
|    | 3.1. Applied loads                                       | 2  |
|    | 3.2. Maximum wall forces                                 | 3  |
|    | 3.3. Limit of c/d for yielding of reinforcement          | 4  |
| 4. | Tilt-Up Wall Cracking Moment Capacity (Mcr)              | 4  |
| 5. | Tilt-Up Wall Factored Moment Resistance (Mr)             | 4  |
| 6. | Tilt-Up Wall Vertical Stress Check                       | 5  |
| 7. | Tilt-Up Wall Shear Stress Check                          | 5  |
| 8. | Tilt-Up Wall Mid-Height Deflection $(\Delta_s)$          | 5  |
| 9. | Tilt-Up Wall Panel Analysis and Design – spWall Software | 6  |
| 10 | Design Results Comparison and Conclusions                | 13 |



## Code

Design of Concrete Structures (CSA A23.3-14) and Explanatory Notes on CSA Group standard A23.3-14 "Design of Concrete Structures"

## Reference

Design Guide for Tilt-Up Concrete Panels, ACI 551.2R-15, 2015, Example B.1

spWall Engineering Software Program Manual v5.01, STRUCTUREPOINT, 2016

## **Design Data**

 $f_c$ ' = 25 MPa normal weight concrete (w<sub>c</sub> = 24 kN/m<sup>3</sup>)

 $f_y = 400 \text{ MPa}$ 

Wall length =  $l_c = 9.5 \text{ m} - 0.5 \text{m} = 9.0 \text{ m}$ 

Assumed wall thickness = 180 mm

Assumed eccentricity =  $e_{cc}$  = 75 mm

Assumed vertical reinforcement: 20 - 20M (single layer)





#### 1. Minimum Vertical Reinforcement

$$\rho_{l} = \frac{A_{v,vertical}}{b \times h} = \frac{6,000}{4,500 \times 180} = 0.0074$$

$$\rho_{l,\min} = 0.0015$$

$$\rho_{l,\min} = 0.0015 \quad (3 \times 180)$$

$$(3 \times 180) \quad (540 \text{ mm})$$

$$s_{l,\max} = \text{smallest of} \begin{cases} 3 \times h \\ 500 \text{ mm} \end{cases} = \text{smallest of} \begin{cases} 3 \times 180 \\ 500 \text{ mm} \end{cases} = \text{smallest of} \begin{cases} 540 \text{ mm} \\ 500 \text{ mm} \end{cases} = 500 \text{ mm}$$
   
CSA A23.3-14

(14.1.8.4)

$$s_{l,provided} = \frac{4,500}{20} = 225 \text{ mm} \le s_{l,\max} = 500 \text{ mm} (\mathbf{0.k.})$$

#### 2. Tilt-Up Wall Panels Analysis and Design

Tilt-up concrete panels can be analyzed and designed using the Clause of 23 of the CSA A23.3-14. Tilt-up panels are slender vertical flexural slabs that resist lateral wind or seismic loads and are subject to very low axial stresses. Because of their high slenderness ratios, they shall be designed for second-order P- $\Delta$  effects to ensure structural stability and satisfactory performance under specified loads. Therefore the method presented in clause 23.3 used to analysis and evaluate the wall. The method is applicable when the conditions summarized below are met:

| ٠ | The wall can be designed as simply supported                                    | <u>CSA A23.3-14 (23.3.1.1)</u> |
|---|---------------------------------------------------------------------------------|--------------------------------|
| ٠ | The effective panel height shall be center to center distance between supports. | <u>CSA A23.3-14 (23.2.1)</u>   |
| ٠ | The minimum panel thickness should be 140 mm                                    | <u>CSA A23.3-14 (23.2.2)</u>   |
| • | The maximum effective height to thickness ratio shall be 50                     | <u>CSA A23.3-14 (23.2.3)</u>   |
| • | Vertical stress should be less than $0.09\phi_c f'_c$                           | <u>CSA A23.3-14 (23.3.1.2)</u> |

#### 3. Tilt-Up Wall Structural Analysis

Using Clause 23.3, calculate factored loads as follows for each of the considered load combinations:

#### 3.1. Applied loads

Wall self-weight =  $\frac{180}{1,000} \times 4.5 \times \left(\frac{9}{2} + 0.5\right) \times 24 = 97.20 \text{ kN}$   $P_{DL} = 3 \times 10.5 = 31.5 \text{ kN}$   $P_{LL} = 3 \times 11 = 33 \text{ kN}$  $w = 1.5 \text{ kN/m}^2$  Structure Point

CONCRETE SOFTWARE SOLUTIONS



#### 3.2. Maximum wall forces

Calculate maximum factored wall forces in accordance with 23.3.1 including moment magnification due to second order (P- $\Delta$ ) effects. Load combination U = 1.25 *D* × 1.5 *L* × 0.4 *W* is considered in this example:

 $P_{tf} = 1.25 \times 31.5 + 1.5 \times 33.0 = 88.88 \text{ kN}$   $P_{wf} = 1.25 \times 92.7 = 121.5 \text{ kN}$   $P_{f} = P_{wf} + P_{tf} = 88.88 + 121.50 = 210.38 \text{ kN}$   $W_{f} = 0.4 \times 1.5 \times 4.5 \text{ m} = 2.7 \text{ kN/m}$   $M_{f} = M_{b}\delta_{b}$ <u>CSA A23.3-14 (Eq. 23.2)</u>

Where:

$$\delta_{b} = \frac{1}{1 - \frac{P_{f}}{\phi_{m}K_{bf}}} = \frac{1}{1 - \frac{210.38 \times 10^{3}}{0.75 \times 6.78 \times 10^{5}}} = 1.71$$

$$M_{b} = \frac{W_{f} \times \ell^{2}}{8} + P_{tf} \times \frac{e}{2} + \left(P_{wf} + P_{tf}\right) \times \Delta_{o}$$

$$M_{b} = \frac{2.7 \times 9.0^{2}}{8} + 88.88 \times \frac{0.075}{2} + (121.50 + 88.88) \times 0.0225 = 35.40 \text{ kN.m}$$

$$M_{f} = M_{b}\delta_{b} = 35.40 \times 1.71 = 60.40 \text{ kN.m}$$

Where  $M_b$  is the maximum factored moment in panel at load stage which deflection is computed, not including<br/>P- $\Delta$  effects.CSA A23.3-14 (23.3.1.3)

$$E_{c} = (3,300\sqrt{f_{c}} + 6,900) \left(\frac{\gamma_{c}}{2,300}\right)^{1.5} = (3,300\sqrt{25} + 6,900) \left(\frac{2,447}{2,300}\right)^{1.5} = 25,684 \text{ MPa} \quad \underline{CSA \ A23.3-14(8.6.2.2)}$$

$$I_{cr} = \frac{bc^{3}}{3} + \frac{E_{s}}{E_{c}} A_{s,eff} \left(d-c\right)^{2} \qquad \underline{CSA \ A23.3-14(23.3.1.3)}$$

Calculate the effective area of longitudinal reinforcement in a slender wall for obtaining an approximate cracked moment of inertia.

$$A_{s,eff} = A_s + \frac{P_f}{\phi_s f_y} \left(\frac{h}{2d}\right) = 6,000 + \frac{310.38}{0.85 \times 400} \left(\frac{180}{2 \times 90}\right) = 6,619 \text{ in.}^2$$
CSA A23.3-14(Eq. 23.4)

The following calculation are performed with the effective area of steel in lieu of the actual area of steel.





CSA A23.3-14(10.5.2)

CSA A23.3-14 (9.8.2.3)

$$a = \frac{A_{se} \times f_{y}}{\alpha_{1} \times f_{c}^{'} \times b} = \frac{6,619 \times 400}{0.81 \times 25 \times (4,500)} = 28.96 \text{ mm}$$

$$c = \frac{a}{\beta_{1}} = \frac{28.96}{0.91} = 31.92 \text{ mm}$$

$$\alpha_{1} = 0.85 - 0.0015 f_{c}^{'} = 0.81 > 0.67 \qquad \qquad \underbrace{CSA \ A23.3 - 14 \ (10.1.7)}_{\beta_{1}} = 0.97 - 0.0025 f_{c}^{'} = 0.91 > 0.67 \qquad \qquad \underbrace{CSA \ A23.3 - 14 \ (10.1.7)}_{\beta_{1}} = \frac{bc^{3}}{3} + \frac{E_{s}}{E_{c}} A_{s,eff} \ (d - c)^{2} \qquad \qquad \underbrace{CSA \ A23.3 - 14 \ (23.3.1.3)}_{5 \times (9,000)^{2}} = 6.78 \times 10^{5}$$

## 3.3. Limit of c/d for yielding of reinforcement

$$\frac{c}{d} \le \frac{700}{700 + f_y} \to 0.35 \le 0.64$$

Therefore, reinforcement can be assumed yielded.

## 4. Tilt-Up Wall Cracking Moment Capacity (Mcr)

Determine  $f_r$  = Modulus of rapture of concrete and  $I_g$  = Moment of inertia of the gross uncracked concrete section to calculate  $M_{cr}$ 

$$f_r = 0.6\lambda \sqrt{f_c'} = 0.6 \times 1.0 \times \sqrt{25} = 3.0 \text{ MPa}$$

$$I_g = \frac{l_w h^3}{12} = \frac{4,500 \times 180^3}{12} = 2.19 \times 10^9 \text{ mm}^4$$

$$y_t = \frac{h}{2} = \frac{190}{2} = 80 \text{ mm}$$

$$M_{cr} = \frac{f_r I_g}{y_t} = \frac{(3.0/2) \times (2.19 \times 10^9)}{90} \times 10^{-6} = 36.45 \text{ kN.m}$$

$$\underline{CSA \ A23.3-14 \ (Eq.9.2)}$$

 $f_r$  should be taken as half of the value given in Eq.8.3

## 5. Tilt-Up Wall Factored Moment Resistance (Mr)

For load combination #1:

$$M_r = \phi_s \times A_{se} \times f_y \times \left(d - \frac{a}{2}\right) = 0.85 \times 6,619 \times 400 \times \left(90 - \frac{28.96}{2}\right) / 10^6 = 169.94 \text{ kN.m}$$
$$M_r = 169.94 \text{ kN.m} > M_f = 60.40 \text{ kN.m} \text{ (o.k.)}$$



#### 6. Tilt-Up Wall Vertical Stress Check

$$\frac{P_f}{A_g} = \frac{210.38 \times 10^3}{180 \times (4,500) \times 10^6} = 0.26 \text{ MPa} < 0.09 \phi_c f_c^{'} = 0.09 \times 0.65 \times 25 = 1.46 \text{ MPa} \text{ (o.k.)} \qquad \underline{CSA \ A23.3-14 \ (23.3.12)}$$

#### 7. Tilt-Up Wall Shear Stress Check

In-plane shear is not evaluated since in-plane shear forces are not applied in this example. Out-of-plane shear due to lateral load should be checked against the shear capacity of the wall. By inspection of the maximum shear forces, it can be determined that the maximum shear force is under 30 kN width. The wall has a shear capacity approximately 190 kN width and no detailed calculations are required by engineering judgement. (See figure 6 for detailed shear force diagram).

#### 8. Tilt-Up Wall Mid-Height Deflection $(\Delta_s)$

The maximum out-of-plane deflection ( $\Delta_s$ ) under specified lateral and vertical loads shall not exceed l/100, but it shall not be greater than can be tolerated by attached structural or non-structural elements. The horizontal mid-height deflection may be computed as follows: <u>CSA A23.3-14 (23.3.2)</u>

$$\Delta_{s} = \frac{5M_{s}\ell^{2}}{48E_{c}I_{e}} = \frac{M_{s}}{K_{bs}}$$
CSA A23.3-14 (Eq. 23.5)

Where

 $M_s = M_{bs} \delta_{bs}$ 

Where  $M_{bs}$  is the maximum moment in panel due to service loads at load stage at which deflection is computed, not including P- $\Delta$  effects.

$$M_{bs} = \frac{W_s \ell^2}{8} + P_{ts} \frac{e}{2} + \left(P_{ws} + P_{ts}\right) \Delta_o$$
$$I_e = I_{cr} + \left(I_g - I_{cr}\right) \left[\frac{M_{cr}}{M_s}\right]^3 \le I_g$$

Iterative procedure is used to determine  $\Delta_s$  (since Ie is a function of Ms) as follows:

Assume  $M_s = 78.2 \text{ kN.m}$ 

$$K_{bs} = \frac{48E_cI_e}{5\ell^2} = \frac{48 \times 25,684 \times 4.22 \times 10^8}{5 \times 9,000^2} = 1.28 \times 10^6$$

$$P_{s} = P_{ws} + P_{ts} = 97.20 + 64.50 = 161.70 \text{ kN}$$
$$M_{bs} = \frac{(1.5 \times 4.5) \times 9^{2}}{8} + 64.5 \times \frac{75}{2 \times 1,000} + (97.2 + 64.5) \times \frac{22.5}{1,000} = 68.35 \text{ kN.m}$$

$$\delta_{bs} = \frac{1}{1 - \frac{P_s}{K_{bs}}} = \frac{1}{1 - \frac{161.7}{1.28 \times 10^6}} = 1.14 \ge 1.0$$



 $M_s = 68.35 \times 1.14 = 78.2$  kN.m

The assumption that  $M_s = 78.2$  kN.m is correct.

$$\Delta_s = \frac{M_s}{K_{bs}} = \frac{78.2 \times 10^3}{1.28 \times 10^6} \times \frac{10^3 \text{ mm}}{1 \text{ m}} = 60.94 \text{ mm}$$
$$\Delta_s = 60.94 \text{ mm} < \frac{l_c}{100} = \frac{9,000}{100} = 90 \text{ mm} \quad (\textbf{o.k.})$$

The wall is adequate with 20 - 20M vertical reinforcement and 180 mm thickness.

#### 9. Tilt-Up Wall Panel Analysis and Design – <u>spWall</u> Software

<u>spWall</u> is a program for the analysis and design of reinforced concrete shear walls, tilt-up walls, precast walls and Insulate Concrete Form (ICF) walls. It uses a graphical interface that enables the user to easily generate complex wall models. Graphical user interface is provided for:

- Wall geometry (including any number of openings and stiffeners)
- Material properties including cracking coefficients
- Wall loads (point, line, and area),
- Support conditions (including translational and rotational spring supports)

<u>spWall</u> uses the Finite Element Method for the structural modeling, analysis, and design of slender and nonslender reinforced concrete walls subject to static loading conditions. The wall is idealized as a mesh of rectangular plate elements and straight line stiffener elements. Walls of irregular geometry are idealized to conform to geometry with rectangular boundaries. Plate and stiffener properties can vary from one element to another but are assumed by the program to be uniform within each element.

Six degrees of freedom exist at each node: three translations and three rotations relating to the three Cartesian axes. An external load can exist in the direction of each of the degrees of freedom. Sufficient number of nodal degrees of freedom should be restrained in order to achieve stability of the model. The program assembles the global stiffness matrix and load vectors for the finite element model. Then, it solves the equilibrium equations to obtain deflections and rotations at each node. Finally, the program calculates the internal forces and internal moments in each element. At the user's option, the program can perform second order analysis. In this case, the program takes into account the effect of in-plane forces on the out-of-plane deflection with any number of openings and stiffeners.

In <u>spWall</u>, the required flexural reinforcement is computed based on the selected design standard (CSA A23.3-14 is used in this example), and the user can specify one or two layers of wall reinforcement. In stiffeners and boundary elements, <u>spWall</u> calculates the required shear and torsion steel reinforcement. Wall concrete strength





(in-plane and out-of-plane) is calculated for the applied loads and compared with the code permissible shear capacity.

For illustration and comparison purposes, the following figures provide a sample of the input modules and results obtained from a <u>spWall</u> model created for the reinforced concrete wall in this example.

| spwall           |                                                                                                                                                                                                                                                                                                                                                                   |                  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Project          | Properties Supports Load Combinations                                                                                                                                                                                                                                                                                                                             |                  |
| Define<br>Assign | Point Loads                                                                                                                                                                                                                                                                                                                                                       | Point Load       |
| Solve<br>Options | Label Load Case Eccentricity (mm)           D         Case A         T                                                                                                                                                                                                                                                                                            | Linear Area Load |
|                  | $ \begin{array}{ c c c c c } \hline Forces (kN) & & & & \\ \hline Px & Py & Pz & & \\ \hline 0 & -10.5 & 0 & & & \\ \hline \end{array} & \hline \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                             |                  |
|                  | Label         Case         Px         Py         Pz         Mx         My         Mz         Eccentricity           D         A         0.000         -10.500         0.000         0.000         0.000         75.000         75.000           L         B         0.000         -11.000         0.000         0.000         0.000         75.000         Delete |                  |

Figure 2 – Defining Loads for Tilt-Up Wall Panel (spWall)







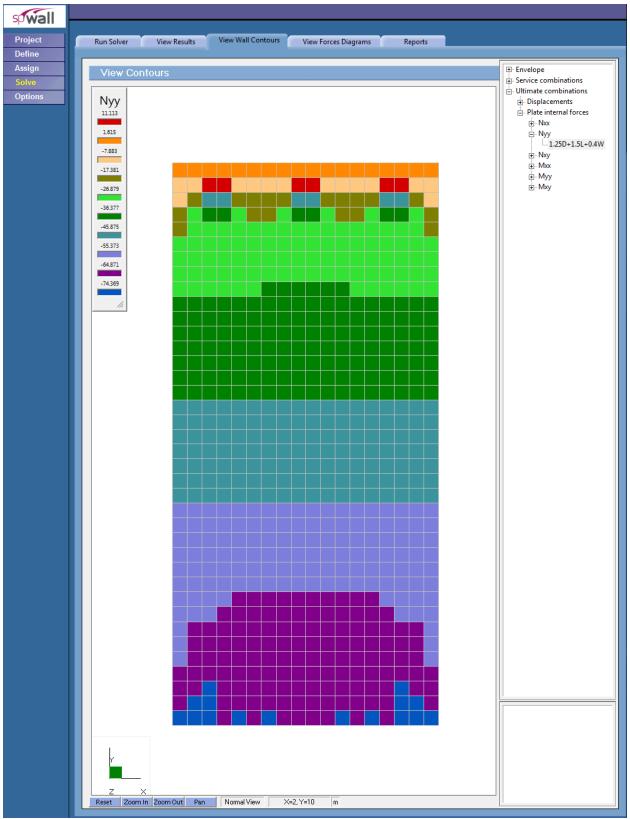



Figure 3 – Factored Axial Forces Contour Normal to Tilt-Up Wall Panel Cross-Section (spWall)







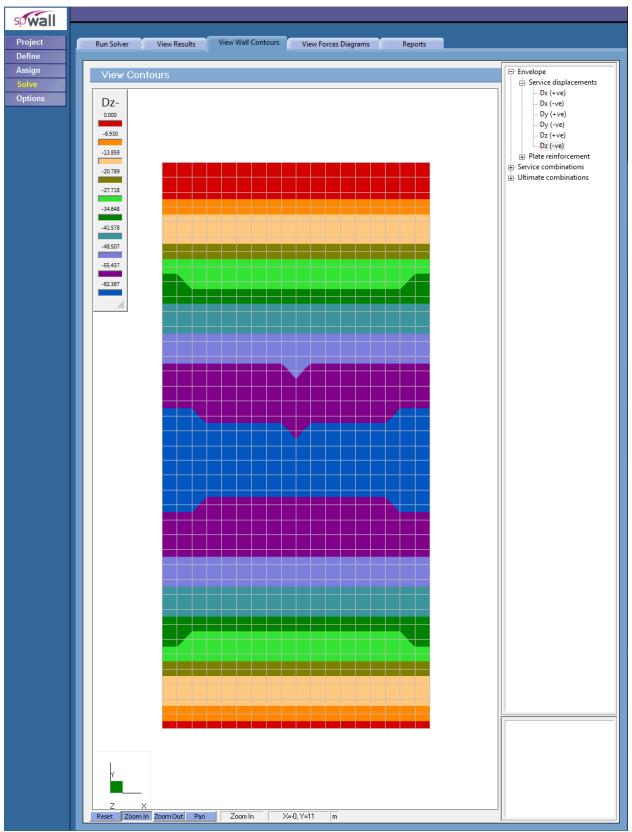



Figure 4 – Tilt-Up Wall Panel Lateral Displacement Contour (Out-of-Plane) (spWall)





CONCRETE SOFTWARE SOLUTIONS

| spwall           |                                                                                                           |                                                  |
|------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Project          | Run Solver View Results View Wall Contours View Forces Diagrams Reports                                   |                                                  |
| Define<br>Assign | Mau Diagrama                                                                                              |                                                  |
| Solve            | View Diagrams                                                                                             |                                                  |
| Options          | Diagram Scale: 1 Show Values Min/Max Only Update                                                          | ⊡- Nuy<br>1.25D+1.5L+0.4W                        |
|                  |                                                                                                           | tanını vux<br>tanını vuz                         |
|                  |                                                                                                           | ⊞- Mux<br>⊞- Muy                                 |
|                  |                                                                                                           | ⊕. Muz     ⊡. Wall concrete shear strength       |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           | Max. Value: -0.000 kN<br>Min. Value: -319.802 kN |
|                  |                                                                                                           | WITH, VALUE: -519.002 KIN                        |
|                  |                                                                                                           |                                                  |
|                  |                                                                                                           |                                                  |
|                  | Z         X           Reset         Zoom Out         Pan         Normal View         X=-0, Y=-1         m |                                                  |
|                  |                                                                                                           |                                                  |

Figure 5 – Tilt-Up Wall Panel Axial Load Diagram (spWall)





CONCRETE SOFTWARE SOLUTIONS

| spwall            |                                                                                                         |                                                 |
|-------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Project<br>Define | Run Solver View Results View Wall Contours View Forces Diagrams Reports                                 |                                                 |
| Assign            | View Diagrams                                                                                           |                                                 |
| Solve             |                                                                                                         | Wall cross-sectional forces                     |
| Options           | Diagram Scale: 1 Update Update                                                                          |                                                 |
|                   |                                                                                                         | ⊡ Vuz<br>                                       |
|                   |                                                                                                         | ⊕- Mux<br>⊕- Muy                                |
|                   |                                                                                                         | ⊕ Muz<br>⊕ Wall concrete shear strength         |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         | Max. Value: 18.714 kN<br>Min. Value: -26.918 kN |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   |                                                                                                         |                                                 |
|                   | Z         X           Reset         Zoom Out         Pan         Normal View         X=3, Y=4         m |                                                 |
|                   |                                                                                                         |                                                 |

Figure 6 – Out-of-plane Shear Diagram (spWall)







| spwall            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project<br>Define | Run Solver View Results View Wall Contours View Forces Diagrams Reports                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Assign            | View Diagrams                                                                                           | 🕀 Stiffener internal forces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Solve<br>Options  | Diagram Scale: 1 Show Values Min/Max Only Update                                                        | Wall cross-sectional forces     ⊡. Nuy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Options           |                                                                                                         | teritoria de la constante de |
|                   |                                                                                                         | ⊡. Mux<br>1.25D+1.5L+0.4W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   |                                                                                                         | ● Muy<br>● Muz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   |                                                                                                         | Wall concrete shear strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         | Max. Value: 60.566 kNm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   |                                                                                                         | Min. Value: -0.184 kNm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | l                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | Z         X           Reset         Zoom Out         Pan         Normal View         X=4, Y=2         m |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Figure 7 – Tilt-Up Wall Moment Diagram (spWall)

Structure Point



STRUCTUREPOINT - spWall v5.01 (TM) Licensed to: StructurePoint, License ID: 66184-1055153-4-2C6B6-2C6B6 C:\TSDA\Tilt-Up Wall-CSA.wal

-5.99e+001

-5.98e+001

-5.98e+001

-5.98e+001

-5.99e+001 -6.01e+001 -6.03e+001 -6.05e+001

-6.09e+001

-6.13e+001

-6.18e+001

-6.24e+001

08-03-2018, 10:02:48 AM

Page 1

ULTIMATE COMBINATIONS: CROSS-SECTIONAL FORCES

Force (Vux, Nuy, Vuz): kN, Moment (Mux, Muy, Muz): kNm Y-coordinate, X-centroid: m

Ultimate combination: 1.25D+1.5L+0.4W

| Hori   | zontal Wall | Section    |              | In-plane Forc | es           | Out         | -of-plane Fo | rces    |
|--------|-------------|------------|--------------|---------------|--------------|-------------|--------------|---------|
| No. Y- | coordinate  | X-centroid | Vux          | Nuy           | Muz          | Vuz         | Mux          | Muy     |
|        |             |            |              |               |              |             |              |         |
| 19-    | 4.500       | 2.250      | -5.1159e-013 | -2.1042e+002  | 1.4943e-011  | 1.6363e+000 | 6.0353e+001  | 1.0920  |
| 19+    | 4.500       | 2.250      | -3.4931e-014 | -2.1042e+002  | -1.2946e-012 | 1.6363e+000 | 6.0350e+001  | -4.3015 |

#### Figure 8 - Tilt-Up Wall Panel Cross-Sectional Forces (spWall)

| STRUCTUREPOINT - spWall v5.01 (IM)<br>Licensed to: StructurePoint, License ID: 66184-1055153-4-2C6B6-2C6B6<br><u>C:\TSDA\Tilt-Up Wall-CSA.wal</u> | 08-03-2018, 09:57:28 AM<br>Page 33 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| SERVICE COMBINATIONS: NODAL DISPLACEMENTS<br>Displacement (Dx, Dy, Dz): mm<br>Service combination: Service                                        |                                    |
| Node Dx Dy Dz                                                                                                                                     |                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                              |                                    |

Figure 9 – Tilt-Up Wall Panel Displacement at Critical Section (Service Combinations) (spWall)

 $D_{z,avg} = 60.83 \text{ mm}$ 

#### **10. Design Results Comparison and Conclusions**

350 -8.11e-004 -4.68e-002

351 -4.06e-004 -4.68e-002

352 -4.30e-015 -4.68e-002 353 4.06e-004 -4.68e-002

 354
 8.11e-004
 -4.68e-002

 355
 1.21e-003
 -4.68e-002

 356
 1.61e-003
 -4.68e-002

 357
 2.01e-003
 -4.67e-002

2.40e-003 -4.67e-002

2.80e-003 -4.66e-002

3.18e-003 -4.65e-002

3.57e-003 -4.64e-002

358

359

360

361

| Table 1 – Comparison of Tilt-Up Wall Panel Analysis and Design Results |                |                     |                             |  |  |
|------------------------------------------------------------------------|----------------|---------------------|-----------------------------|--|--|
| Solution                                                               | $M_{f}$ (kN.m) | N <sub>f</sub> (kN) | D <sub>z,service</sub> (mm) |  |  |
| Hand                                                                   | 60.4           | 210.4               | 60.94                       |  |  |
| <u>spWall</u>                                                          | 60.3           | 210.4               | 60.83                       |  |  |

The results of all the hand calculations used illustrated above are in agreement with the automated exact results obtained from the <u>spWall</u> program.





In column and wall analysis, section properties shall be determined by taking into account the influence of axial loads, the presence of cracked regions along the length of the member, and the effect of load duration (creep effects). CSA A23.3 permits the use of moment of inertia values of 0.70 I<sub>g</sub> for uncracked walls and  $0.35I_g$  for cracked walls.

#### CSA A23.3-14 (10.14.1.2)

In <u>spWall</u> program, these effects are accounted for where the user can input reduced moment of inertia using "cracking coefficient" values for plate and stiffener elements to effectively reduce stiffness. Cracking coefficients for out-ofplane (bending and torsion) and in-plane (axial and shear) stiffness can be entered for plate elements. Because the values of the cracking coefficients can have a large effect on the analysis and design results, the user must take care in selecting values that best represent the state of cracking at the particular loading stage. Cracking coefficients are greater than 0 and less than 1.

At ultimate loads, a wall is normally in a highly cracked state. The user could enter a value of out-of-plane cracking coefficient for plates of  $I_{cracked}/I_{gross}$  based on estimated values of  $A_s$ . After the analysis and design, if the computed value of  $A_s$  greatly differs from the estimated value of  $A_s$ , the analysis should be performed again with new values for the cracking coefficients. A member resistance factor of 0.75 can be used to reduce the calculated bending stiffness of the concrete section in accordance with CSA A23.3-14 Clause 23.3.1.3.

At service loads, a wall may or may not be in a highly cracked state. For service load deflection analysis, a wall panel should be modeled with an out-of-plane cracking coefficient of  $(I_{effective}/I_{gross})$ .

Check "<u>Reinforced Concrete Tilt-Up Wall with Opening Panel Analysis and Design (ACI 551)</u>" example for more details about cracking coefficient optimization for tilt-up walls.